Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35893512

RESUMO

The interest in magnetic nanostructures exhibiting perpendicular magnetic anisotropy and exchange bias (EB) effect has increased in recent years owing to their applications in a new generation of spintronic devices that combine several functionalities. We present a nanofabrication process used to induce a significant out-of-plane component of the magnetic easy axis and EB. In this study, 30 nm thick CoO/Co multilayers were deposited on nanostructured alumina templates with a broad range of pore diameters, 34 nm ≤ Dp ≤ 96 nm, maintaining the hexagonal lattice parameter at 107 nm. Increase of the exchange bias field (HEB) and the coercivity (HC) (12 times and 27 times, respectively) was observed in the nanostructured films compared to the non-patterned film. The marked dependence of HEB and HC with antidot hole diameters pinpoints an in-plane to out-of-plane changeover of the magnetic anisotropy at a nanohole diameter of ∼75 nm. Micromagnetic simulation shows the existence of antiferromagnetic layers that generate an exceptional magnetic configuration around the holes, named as antivortex-state. This configuration induces extra high-energy superdomain walls for edge-to-edge distance >27 nm and high-energy stripe magnetic domains below 27 nm, which could play an important role in the change of the magnetic easy axis towards the perpendicular direction.

2.
Materials (Basel) ; 13(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352979

RESUMO

Fe-Pd magnetic shape-memory alloys are of major importance for microsystem applications due to their magnetically driven large reversible strains under moderate stresses. In this context, we focus on the synthesis of nanostructured Fe70Pd30 shape-memory alloy antidot array thin films with different layer thicknesses in the range from 20 nm to 80 nm, deposited onto nanostructured alumina membranes. A significant change in the magnetization process of nanostructured samples was detected by varying the layer thickness. The in-plane coercivity for the antidot array samples increased with decreasing layer thickness, whereas for non-patterned films the coercive field decreased. Anomalous coercivity dependence with temperature was detected for thinner antidot array samples, observing a critical temperature at which the in-plane coercivity behavior changed. A significant reduction in the Curie temperature for antidot samples with thinner layer thicknesses was observed. We attribute these effects to complex magnetization reversal processes and the three-dimensional magnetization profile induced by the nanoholes. These findings could be of major interest in the development of novel magnetic sensors and thermo-magnetic recording patterned media based on template-assisted deposition techniques.

3.
J Phys Condens Matter ; 25(49): 496010, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24214918

RESUMO

Recent investigations in R2Fe17 intermetallic compounds have evidenced that these materials present a moderate magnetocaloric effect (MCE) near room temperature. A series of accurate magnetization measurements was carried out to show that the value of the demagnetizing factor has a significant influence on the absolute MCE value of Er2Fe17. In addition, the critical exponents determined from heat capacity and magnetization measurements allow us to describe the field dependence of the observed MCE around the Curie temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...